Peridynamics and topology optimization

Jose C. Bellido

E.T.S.I. Industriales
Departamento de Matematicas
Universidad de Castilla-La Mancha
Ciudad Real-SPAIN

WCSMO11-Sydney
Contenido

1. Peridynamics: a new modeling paradigm in continuum mechanics
2. Sensitivity filtering in topology optimization
3. Equivalence on sensitivity filtering and topology optimization with peridynamic models
Peridynamics is a nonlocal model in Continuum Mechanics and Elasticity introduced by Silling \(^1\).

\(^1\)S. A. Silling, \textit{Reformulation of elasticity theory for discontinuities and long range forces}, JMPS, 48 (2000)
Peridynamics

- Peridynamics is a nonlocal model in Continuum Mechanics and Elasticity introduced by Silling \(^1\)

- Nonlocality: points at a finite distance exert a force upon each other

\(^1\) S. A. Silling, *Reformulation of elasticity theory for discontinuities and long range forces*, JMPS, 48 (2000)
Peridynamics

- Peridynamics is a nonlocal model in Continuum Mechanics and Elasticity introduced by Silling

- Nonlocality: points at a finite distance exert a force upon each other

- Peridynamics models avoid the use of spatial derivatives: instead than by differentiation, material forces are computed by integration by summing up interactions with other nearby particles

Peridynamics

- Peridynamics is a nonlocal model in Continuum Mechanics and Elasticity introduced by Silling \(^1\)

- Nonlocality: points at a finite distance exert a force upon each other

- Peridynamics models avoid the use of spatial derivatives: instead than by differentiation, material forces are computed by integration by summing up interactions with other nearby particles

- Effective modeling for discontinuities in solids: cracks, fracture, cavitation,....

\(^1\)S. A. Silling, *Reformulation of elasticity theory for discontinuities and long range forces*, JMPS, 48 (2000)
Local elasticity models

A deformation $u : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is obtained as a minimizer of the hyperelastic (potential) energy

$$\int_\Omega W(Du(x)) \, dx + \int_\Omega f(x)u(x) \, dx,$$

where Ω is the reference solid, and Du stands for the gradient of the deformation u. f stands for external forces on the solid and u verifies boundary conditions.
Local elasticity models

- A deformation $u : \mathbb{R}^n \to \mathbb{R}^n$ is obtained as a minimizer of the hyperelastic (potential) energy

$$
\int_{\Omega} W(Du(x)) \, dx + \int_{\Omega} f(x)u(x) \, dx,
$$

where Ω is the reference solid, and Du stands for the gradient of the deformation u. f stands for external forces on the solid and u verifies boundary conditions.

- In the linear elastic case function W is quadratic, so that the critical points equations is the linear elasticity system.
Local elasticity models

- A deformation $\mathbf{u} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is obtained as a minimizer of the hyperelastic (potential) energy

$$\int_{\Omega} W(D\mathbf{u}(\mathbf{x})) \, d\mathbf{x} + \int_{\Omega} f(\mathbf{x})\mathbf{u}(\mathbf{x}) \, d\mathbf{x},$$

where Ω is the reference solid, and $D\mathbf{u}$ stands for the gradient of the deformation \mathbf{u}. f stands for external forces on the solid and \mathbf{u} verifies boundary conditions.

- In the linear elastic case function W is quadratic, so that the critical points equations is the linear elasticity system.

- Existence of optimal solutions is mathematically guaranteed if the integrand W is polyconvex (a convex function of $D\mathbf{u}$ and all its minors).
Nonlocal peridynamics models

- A deformation \(u : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is obtained as a minimizer of the macroelastic energy

\[
\int_{\Omega} \int_{\Omega \cap \{|x-x'|<\delta\}} w(x-x',u(x)-u(x')) \, dx \, dx' + \int_{\Omega} f(x)u(x) \, dx,
\]

where \(w \) is the pairwise potential function, and \(\delta \) is the horizon of interaction between particles.
Nonlocal peridynamics models

- A deformation \(u : \mathbb{R}^n \to \mathbb{R}^n \) is obtained as a minimizer of the macroelastic energy

\[
\int_{\Omega} \int_{\Omega \cap \{|x-x'|<\delta\}} w(x-x', u(x) - u(x')) \, dx \, dx' + \int_{\Omega} f(x) u(x) \, dx,
\]

where \(w \) is the pairwise potential function, and \(\delta \) is the horizon of interaction between particles

- This is a non local energy
Nonlocal peridynamics models

- A deformation $\mathbf{u} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is obtained as a minimizer of the macroelastic energy

$$
\int_{\Omega} \int_{\Omega \cap \{|x-x'|<\delta\}} w(x-x', \mathbf{u}(x) - \mathbf{u}(x')) \, dx \, dx' + \int_{\Omega} f(x) \mathbf{u}(x) \, dx,
$$

where w is the pairwise potential function, and δ is the horizon of interaction between particles.

- This is a non local energy.

- In the linear case this is a quadratic functional,

$$
\int_{\Omega} \int_{\Omega} K(x, x') (\mathbf{u}(x) - \mathbf{u}(x'))^2 \, dx \, dx',
$$

where K is a convolution kernel.
The amount of papers on the subject on the last few years is overwhelming
The amount of papers on the subject on the last few years is overwhelming.

It has shown to be a very good way for modeling fracture and discontinuities.
Nonlocal peridynamics models

- The amount of papers on the subject on the last few years is overwhelming
- It has shown to be a very good way for modeling fracture and discontinuities
- There are already numerical algorithms available for simulation
Nonlocal peridynamics models

- Existence of minimizers for this problems is guaranteed by a non-local convexity notion

\[\text{Existence of minimizers for this problems is guaranteed by a non-local convexity notion} \]

\[^3 \text{J.C. Bellido, C. Mora-Corral, P. Pedregal, } \textit{Hyperelasticity as a } \Gamma \text{-limit of peridynamics when the horizon goes to zero}, \text{To Appear in Cal. Var.} (2015) \]
Nonlocal peridynamics models

- Existence of minimizers for this problems is guaranteed by a non-local convexity notion: we say that w verifies the non-local convexity property if the function

$$y \to \int_{\Omega} w(x - x', y - u(x')) \, dx'$$

is convex for any point x and any test function u.

\[^3\text{J.C. Bellido, C. Mora-Corral, P. Pedregal, } \textit{Hyperelasticity as a } \Gamma \text{-limit of peridynamics when the horizon goes to zero}, \textit{To Appear in Cal. Var.} (2015)\]
Nonlocal peridynamics models

- Existence of minimizers for this problems is guaranteed by a non-local convexity notion: we say that w verifies the non-local convexity property if the function

$$y \rightarrow \int_{\Omega} w(x - x', y - u(x')) \, dx'$$

is convex for any point x and any test function u.

- It can be shown that when the horizon $\delta \to 0$, nonlocal peridynamics models converge to a local hyperelastic model.

Sensitivity filtering is a fundamental tool in topology optimization in order to avoid mesh dependence and checkerboard problem.
Sensitivity filtering is a fundamental tool in topology optimization in order to avoid mesh dependence and checkerboard problem.

If c is the cost functional (compliance) and ρ the density variable (optimization variable), sensitivity filter modifies in the numerical algorithm $\frac{\partial c}{\partial \rho}$ by a filter sensitivity $\hat{\frac{\partial c}{\partial \rho}}$ that can be obtained as convolution of the previous one,

$$\hat{\frac{\partial c}{\partial \rho}}(x) = \int K(x, y) \frac{\partial c}{\partial \rho}(y) \, dy$$
Sensitivity filtering

- A convolution filtered function can be obtained as the solution of a Helmholtz-type PDE equation \(^4\)

Sensitivity filtering

- A convolution filtered function can be obtained as the solution of a Helmholtz-type PDE equation \(^4\).

- Applying a sensitivity filter in compliance optimization is equivalent to optimized a nonlocal elasticity compliance: we replace the linear elasticity state by a nonlocal one in the compliance optimization problem \(^5\).

A convolution filtered function can be obtained as the solution of a Helmholtz-type PDE equation. Applying a sensitivity filter in compliance optimization is equivalent to optimized a nonlocal elasticity compliance: we replace the linear elasticity state by a nonlocal one in the compliance optimization problem. The nonlocal model consists of two coupled PDE:

- The linear elasticity system;

References:

Sensitivity filtering

- A convolution filtered function can be obtained as the solution of a Helmholtz-type PDE equation \(^4\).

- Applying a sensitivity filter in compliance optimization is equivalent to optimized a nonlocal elasticity compliance: we replace the linear elasticity state by a nonlocal one in the compliance optimization problem \(^5\). The nonlocal model consists of two coupled PDE:
 - The linear elasticity system;
 - A Helmholtz filtering equation for displacement filtering (gradient enhancement-nonlocality)

Question

Could the sensitivity filter be obtained as the derivative of the nonlocal peridynamic compliance?
Question

Could the sensitivity filter be obtained as the derivative of the nonlocal peridynamic compliance?

Problem (WORK IN PROGRESS)

Filtered sensitivities are peridynamic compliance sensitivities
IDEA OF THE PROOF

Naturally we focus on the linear case, in which the peridynamics functional is quadratic

\[I(u) = \int_{\Omega} \int_{\Omega} K(x, x')(u(x) - u(x'))^2 \, dx \, dx' \]

where \(K \) is convolution kernel.
Let u be a minimizer (displacement).
Sensitivity filtering and peridynamics

Let \(u \) be a minimizer (displacement). It is elementary to check that

\[
\frac{dl}{dt}(u + tv)_{t=0} = 4 \int_{\Omega} v(x) \int_{\Omega} K(x, x')(u(x) - u(x')) \, dx \, dx'
\]
Let \(u \) be a minimizer (displacement). It is elementary to check that

\[
\frac{dl}{dt}(u + tv)_{t=0} = 4 \int_{\Omega} v(x) \int_{\Omega} K(x, x')(u(x) - u(x')) \, dx \, dx'
\]

Therefore the (FRECHET) derivate of the nonlocal functional is

\[
l'(u) = \int_{\Omega} K(x, x')(u(x) - u(x')) \, dx \, dx'
\]
Sensitivity filtering and peridynamics

Let u be a minimizer (displacement). It is elementary to check that

$$\frac{dl}{dt}(u + tv)|_{t=0} = 4 \int_{\Omega} v(x) \int_{\Omega} K(x, x')(u(x) - u(x')) \, dx \, dx'$$

Therefore the (FRECHET) derivate of the nonlocal functional is

$$l'(u) = \int_{\Omega} K(x, x')(u(x) - u(x')) \, dx \, dx'$$

Then, if u is an optimal solution of the peridynamics functional (i.e. a deformation) then it can be written as **convolution**

$$u(x) = C \int_{\Omega} K(x, x')u(x') \, dx'$$

therefore, the **peridynamics displacement can be written as the solution of a Helmholtz-type PDE**
THANK YOU FOR PAYING ATTENTION